
Copyright – BMC Software Inc.

1

BMC Software Inc.

Technical Disclosure Publication Document

CMDBf Registration Service Data Storage and Access

Authors

Vince Kowalski
Ken Huang

Posted: December 2010

Overview

This document describes a solution so that data registered using the standard CMDBf
Registration Service can be stored and accessed in the CMDB.

Background

The problem that is solved by this invention is how to store and access data that is
registered by a Management Data Repository (MDR) to a Federating CMDB. In order to
be compliant with the CMDBf standard (DMTF DSP0252), the MDR must register such
data using the Registration Service defined in the CMDBf standard. The Registration
Service defines operations for pushing data into a CMDB, but it does not specify where
that data goes, how it is stored, or how it is subsequently accessed by the Federating
CMDB. This Technical Disclosure Publication Document teaches the means to do these
things.

The CMDBf standard defines two architectural modes for access data stored in an MDR:

• Push Mode
• Pull Mode

In push mode, the MDR initiates the federation. Typically, the MDR is configured by
selecting some data types to federate. The MDR uses the Registration Service any time
this data is added, updated, or deleted to register the changed data with the CMDB. In
order to do this, the mdrId, the instanceId’s of each of the items and relationships
registered and stored into the Federating CMDB must be preserved so that the subsequent
updates or deletions from the MDR can refer to the same instanceId’s. (See the pseudo-
shema of the <registerRequest> element below) The registered data may be limited to
identification data, but it may also include other properties as well.

<registerRequest>
<mdrId>xs:anyURI</mdrId>
<itemList>

Copyright – BMC Software Inc.

2

<item>
<record>
xs:any
<recordMetadata>...</recordMetadata> ?
</record> *
<instanceId>cmdbf:MdrScopedIdType</instanceId> +
<additionalRecordType namespace="xs:anyURI"
localName="xs:NCName"/> *
</item> +
<itemList> ?
<relationshipList>
<relationship>
<source>cmdbf:MdrScopedIdType</source>
<target>cmdbf:MdrScopedIdType</target>
<record>
xs:any
<recordMetadata>...</recordMetadata> ?
</record> *
<instanceId>cmdbf:MdrScopedIdType</instanceId> +
<additionalRecordType namespace="xs:anyURI"
localName="xs:NCName"/> *
</relationship> +
<relationshipList> ?
</registerRequest>

In addition, the “registrationServiceMetadata” (see pseudo-schema below; details
explained in chap. 8 of DSP0252_1.0.0.pdf) which is made available to the Federating
CMDB at the time the “push-mode” MDR is configured, must be saved in the Federating
CMDB so that the items and relationships registered can be interpreted accordingly when
queries are made against the registered data.

<registrationServiceMetadata>
<serviceDescription> ... </serviceDescription>
<recordTypeList> ... </recordTypeList>
xs:any *
</registrationServiceMetadata>

In pull mode, the federating CMDB initiates the federation. Typically, the federating
CMDB is configured by selecting the MDR data types that will be federated. The
federating CMDB queries MDRs for instances of this data. The difference between push
and pull mode is that pull mode data is retrieved only when there is a query made of the
CMDB; while in push mode data is pushed to the CMDB at some arbitrary time and the
data is then available for subsequent queries.

Explanation

The problem is solved by creating an embedded MDR (Management Data Repository)
that is internal to the Federating CMDB. This embedded MDR is then accessed using the
Query Service defined in the CMDBf Standard to access and integrate the data into the
Federating CMDB. In other words, this approach keeps the data in an embedded MDR,
which is accessed using standard Pull-Mode Federation concepts and components.

Copyright – BMC Software Inc.

3

The advantage of this approach is that it simplifies the overall architecture. Instead of
having to treat push-mode and pull-mode data as different entities, once the registration
service is executed by an MDR, the data is treated as if it were pull-mode data.

