
Copyright – BMC Software Inc.

1

1

BMC Software Inc.

A Multi-Threaded Software Program for Populating Structured Configuration

Management Database (CMDB) Data

Author:

Henry Liu

Posted: March 2009

Overview

Today’s organizations depend on complex IT infrastructure and business
services to run their daily operations efficiently. Both the IT
infrastructure and business services of an organization can be managed
with software using a CMDB or a CMS as a central repository for the
data known as Configuration Items (CIs). CIs represent the IT asset and
services data as well as their inter-relationships. The idea of A
Multi-Threaded Software Program for Populating Structured CMDB Data can
help solve the problem of populating data into the CMDB for performance
and scalability test purposes with large volume of CIs and certain data
structures or hierarchies. It can also help vendors and customers size
the hardware capacity required for actual production deployments of
CMDB-based software. It is also an effective method for populating CMDB
data for reproducing and trouble-shooting CMDB-related performance and
scalability escalations in customer’s environment as well. In this
technical disclosure bulletin, we describe how such a software program
has been developed and in use at BMC.

Background

All CMDB-based software products provide Application Programming
Interfaces (APIs) for performing various tasks of creating, querying,
updating, and managing CMDB data. Such APIs are used by CMDB-based
software applications to discover and manage IT asset data in the form
of CIs (Configuration Items). Having a software program that can be
used for generating simulated CIs in a CMDB in large volumes would help
not only a CMDB software vendor but also an application software vendor
in testing the performance and scalability of CMDB APIs and CMDB-based
applications.

Solution

The proposed implementation is characterized by the following features:

• A multi-threading programming model which is the underlying
mechanism for generating CMDB data in large volumes concurrently.

• A CMDB data model that is confined by certain CI-relationship
hierarchical structure. This data model is specified in a text
file as input to the program.

• An indexing scheme which tracks two indices: one is the index of
the CI to be created and the other is the index of its parent CI.
The index of a CI to be created is sequential, whereas the parent
index of a CI is determined by both the index and the level of
the CI to be created.

In addition, the implementation of such a software program should
provide sufficient convenience for users to get up to speed quickly in
learning how to use it. The said convenience can be provided by using a
few external input text files to define the CMDB data model, the test
environment, and a product catalog that might be part of a CMDB data.
The program output should be directed to a text file that summarizes
the total number of CIs created, the duration of the run, and the
throughput in terms of CIs / second averaged over all the threads.

Drawings

The following figure shows an example CMDB data model that this
solution is capable of producing. It consists of 4 business
applications, three computer servers, 2 business services, which all
belong to one business service.

Note that this screenshot is for demo-purpose only. The program can
actually generate a lot more such instances at each level.

Implementation

The following pseudo-code is provided to illustrate how the algorithm
for generating the hierarchical CMDB data structure can be implemented.

Step 1:

Given {namespace, classId, relationship, cardinality}, construct an
array of dimension cardinality that will hold the instanceIDs of the
parent objects to be associated with their child objects later. This
can be accomplished with a pair of setter / getter classes.

Copyright – BMC Software Inc.

2

2

Copyright – BMC Software Inc.

3

3

Step 2:

// build the model which is a 2-dimensional array for holding
// the definition for each instance

Read the model definition file and extract the info {classId,
cardinality, level, relationship} from each line;

If (topLevel) {
 setTopLevel;
} else {
 // process range
 if (cardinality is a range) {
 calculate rangeStart;
 calculate rangeEnd;
 calculate rangeStartIndex;
 calculate range;
 } else {
 set range = 0;
}
// process fractional
if (cardinality is fractional) {
 extract part1 of the cardinality;
 extract part2 of the cardinality;
 calculate cardinality;
 set isFractional to true;
}
determine how many instances to create at this level;
determine the start index for this level;

loop (for each instance at the current level) {
if (first level) {
 set parentIndex to 0;
} else {
calculate parentIndex based on the startIndex
and number of instances of the parent level;
}
assign {classId, parentIndex, relationship} to the first three
elements of the attributes of the current instance;
calculate the inclusivity and assign it to the fourth attribute of
the current instance;
set the index for the next instance;
// end loop

if (end of the model definition file) exit;

